Logo des Repositoriums
 

An Artificial Intelligence of Things based Method for Early Detection of Bark Beetle Infested Trees

dc.contributor.authorKnebel, Peter
dc.contributor.authorAppold, Christian
dc.contributor.authorGuldner, Achim
dc.contributor.authorHorbach, Marius
dc.contributor.authorJuncker, Yasmin
dc.contributor.authorMüller, Simon
dc.contributor.authorMatheis, Alfons
dc.contributor.editorWohlgemuth, Volker
dc.contributor.editorNaumann, Stefan
dc.contributor.editorArndt, Hans-Knud
dc.contributor.editorBehrens, Grit
dc.contributor.editorHöb, Maximilian
dc.date.accessioned2022-09-19T09:20:51Z
dc.date.available2022-09-19T09:20:51Z
dc.date.issued2022
dc.description.abstractBark beetles, like the European Spruce Bark Beetle (Ips typographus), are inherent partsof a forest ecosystem. However, with favorable conditions, they can multiply quickly and infest vastamounts of trees and cause their extinction. Therefore, it is important for forest officials and rangers ofe. g. a national park, to monitor the population of the beetles and the infested trees. There are severalways to approach this, but they are often costly and time-consuming. Therefore, we design and test abark beetle early warning system with AI-based data analysis: Audio data, data on pheromones andinformation for a drought stress assessment of the affected trees are to be collected and used as a basisfor the analysis. The aim is to devise a micro-controller-based sensor system that detects the infestationof a tree as early as possible and warns the forest officials, e. g. via a message on their cell phone.en
dc.identifier.isbn978-3-88579-722-7
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/39407
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofEnviroInfo 2022
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-328
dc.subjectSoundscape Ecology
dc.subjectBark beetle detection
dc.subjectIoT sensors
dc.subjectAIoT-based evaluation
dc.titleAn Artificial Intelligence of Things based Method for Early Detection of Bark Beetle Infested Treesen
dc.typeText/Conference Paper
gi.citation.publisherPlaceBonn
gi.citation.startPage111
gi.conference.date26.-30- September 2022
gi.conference.locationHamburg

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
EnviroInfo2022_ShortPaper_10.pdf
Größe:
366.21 KB
Format:
Adobe Portable Document Format