Unsupervised Learning of Fingerprint Rotations
dc.contributor.author | Schuch, Patrick | |
dc.contributor.author | May, Jan Marek | |
dc.contributor.author | Busch, Christoph | |
dc.contributor.editor | Brömme, Arslan | |
dc.contributor.editor | Busch, Christoph | |
dc.contributor.editor | Dantcheva, Antitza | |
dc.contributor.editor | Rathgeb, Christian | |
dc.contributor.editor | Uhl, Andreas | |
dc.date.accessioned | 2019-06-17T10:00:26Z | |
dc.date.available | 2019-06-17T10:00:26Z | |
dc.date.issued | 2018 | |
dc.description.abstract | The alignment of fingerprint samples is a preprocessing step in fingerprint recognition. It allows an improved biometric feature extraction and a more accurate biometric comparison. We propose to use Convolutional Neural Networks for estimation of the rotational part. The main contribution is an unsupervised training strategy similar to Siamese Networks for estimation of rotations. The approach does not need any labelled data for training. It is trained to estimate orientation differences for pairs of samples. Our approach achieves an alignment accuracy with a mean absolute deviation 2:1 on data similar to the training data, which supports the alignment task. For other datasets accuracies down to 6:2 mean absolute deviation are achieved. | en |
dc.identifier.isbn | 978-3-88579-676-3 | |
dc.identifier.pissn | 1617-5468 | |
dc.identifier.uri | https://dl.gi.de/handle/20.500.12116/23803 | |
dc.language.iso | en | |
dc.publisher | Köllen Druck+Verlag GmbH | |
dc.relation.ispartof | BIOSIG 2018 - Proceedings of the 17th International Conference of the Biometrics Special Interest Group | |
dc.relation.ispartofseries | Lecture Notes in Informatics (LNI) - Proceedings, Volume P-282 | |
dc.subject | fingerprint recognition | |
dc.subject | machine learning | |
dc.subject | alignment | |
dc.subject | unsupervised learning. | |
dc.title | Unsupervised Learning of Fingerprint Rotations | en |
dc.type | Text/Conference Paper | |
gi.citation.publisherPlace | Bonn | |
gi.conference.date | 26.-28. September 2018 | |
gi.conference.location | Darmstadt |
Dateien
Originalbündel
1 - 1 von 1
Lade...
- Name:
- update_BIOSIG_2018_paper_55.pdf
- Größe:
- 1.81 MB
- Format:
- Adobe Portable Document Format