Logo des Repositoriums
 
Textdokument

Graph Sampling with Distributed In-Memory Dataflow Systems

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Zusatzinformation

Datum

2021

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Quelle

Verlag

Gesellschaft für Informatik, Bonn

Zusammenfassung

Given a large graph, graph sampling determines a subgraph with similar characteristics for certain metrics of the original graph. The samples are much smaller thereby accelerating and simplifying the analysis and visualization of large graphs. We focus on the implementation of distributed graph sampling for Big Data frameworks and in-memory dataflow systems such as Apache Spark or Apache Flink and evaluate the scalability of the new implementations. The presented methods will be open source and be integrated into Gradoop, a system for distributed graph analytics.

Beschreibung

Gomez, Kevin; Täschner, Matthias; Rostami, M. Ali; Rost, Christopher; Rahm, Erhard (2021): Graph Sampling with Distributed In-Memory Dataflow Systems. BTW 2021. DOI: 10.18420/btw2021-15. Gesellschaft für Informatik, Bonn. PISSN: 1617-5468. ISBN: 978-3-88579-705-0. pp. 303-312. Data Integration, Semantic Data Management, Streaming. Dresden. 13.-17. September 2021

Zitierform

Tags