Logo des Repositoriums
 
Konferenzbeitrag

Quality filtering of EEG signals for enhanced biometric recognition

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2013

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

In this paper we present a biometric person recognition system based on EEG signals incorporating a novel strategy to find and utilize the most informative data segments using the concept of Sample Entropy. The users are presented with a stimulus that prompts a motor-imagery response. This is then measured using an array of EEG sensors. A sliding-window segmentation scheme and Wavelet Packet Decomposition are adopted for primary feature extraction before the quality measurement stage. The quality-filtered feature windows are then used to extract secondary features that are in turn classified using a linear discriminant classifier. The proposed system is tested using a publicly available EEG database and it shows that entropy filtering results in a significant improvement on performance. An average identification accuracy rate of more than 90% is achieved for 109 subjects using only eight electrodes, utilizing only the highest quality for each subject

Beschreibung

Yang, Su; Deravi, Farzin (2013): Quality filtering of EEG signals for enhanced biometric recognition. BIOSIG 2013. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-606-0. pp. 201-208. Regular Research Papers. Darmstadt. 04.-06. September 2013

Schlagwörter

Zitierform

DOI

Tags