Logo des Repositoriums
 

ITP: Inverse Trajectory Planning for Human Pose Prediction

dc.contributor.authorPeña, Pedro A.
dc.contributor.authorVisser, Ubbo
dc.date.accessioned2021-04-23T09:34:07Z
dc.date.available2021-04-23T09:34:07Z
dc.date.issued2020
dc.description.abstractTracking and predicting humans in three dimensional space in order to know the location and heading of the human in the environment is a difficult task. Though if solved it will allow a robotic agent to know where it can safely be and navigate the environment without imposing any danger to the human that it is interacting with. We propose a novel probabilistic framework for robotic systems in which multiple models can be fused into a circular probabilitymap to forecast human poses. We developed and implemented the framework and tested it on Toyota’s HSR robot and Waymo Open Dataset. Our experiments show promising results.de
dc.identifier.doi10.1007/s13218-020-00658-7
dc.identifier.pissn1610-1987
dc.identifier.urihttp://dx.doi.org/10.1007/s13218-020-00658-7
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/36289
dc.publisherSpringer
dc.relation.ispartofKI - Künstliche Intelligenz: Vol. 34, No. 2
dc.relation.ispartofseriesKI - Künstliche Intelligenz
dc.titleITP: Inverse Trajectory Planning for Human Pose Predictionde
dc.typeText/Journal Article
gi.citation.endPage225
gi.citation.startPage209

Dateien