ITP: Inverse Trajectory Planning for Human Pose Prediction
dc.contributor.author | Peña, Pedro A. | |
dc.contributor.author | Visser, Ubbo | |
dc.date.accessioned | 2021-04-23T09:34:07Z | |
dc.date.available | 2021-04-23T09:34:07Z | |
dc.date.issued | 2020 | |
dc.description.abstract | Tracking and predicting humans in three dimensional space in order to know the location and heading of the human in the environment is a difficult task. Though if solved it will allow a robotic agent to know where it can safely be and navigate the environment without imposing any danger to the human that it is interacting with. We propose a novel probabilistic framework for robotic systems in which multiple models can be fused into a circular probabilitymap to forecast human poses. We developed and implemented the framework and tested it on Toyota’s HSR robot and Waymo Open Dataset. Our experiments show promising results. | de |
dc.identifier.doi | 10.1007/s13218-020-00658-7 | |
dc.identifier.pissn | 1610-1987 | |
dc.identifier.uri | http://dx.doi.org/10.1007/s13218-020-00658-7 | |
dc.identifier.uri | https://dl.gi.de/handle/20.500.12116/36289 | |
dc.publisher | Springer | |
dc.relation.ispartof | KI - Künstliche Intelligenz: Vol. 34, No. 2 | |
dc.relation.ispartofseries | KI - Künstliche Intelligenz | |
dc.title | ITP: Inverse Trajectory Planning for Human Pose Prediction | de |
dc.type | Text/Journal Article | |
gi.citation.endPage | 225 | |
gi.citation.startPage | 209 |