Logo des Repositoriums
 

The relative contributions of facial parts qualities to the face image utility

dc.contributor.authorFu, Biying
dc.contributor.authorChen, Cong
dc.contributor.authorHenniger, Olaf
dc.contributor.authorDamer, Naser
dc.contributor.editorBrömme, Arslan
dc.contributor.editorBusch, Christoph
dc.contributor.editorDamer, Naser
dc.contributor.editorDantcheva, Antitza
dc.contributor.editorGomez-Barrero, Marta
dc.contributor.editorRaja, Kiran
dc.contributor.editorRathgeb, Christian
dc.contributor.editorSequeira, Ana
dc.contributor.editorUhl, Andreas
dc.date.accessioned2021-10-04T08:43:47Z
dc.date.available2021-10-04T08:43:47Z
dc.date.issued2021
dc.description.abstractFace image quality assessment predicts the utility of a face image for automated face recognition. A high-quality face image can achieve good performance for the identification or verification task. Some recent face image quality assessment algorithms are established on deep-learningbased approaches, which rely on face embeddings of aligned face images. Such face embeddings fuse complex information into a single feature vector and are, therefore, challenging to disentangle. The semantic context however can provide better interpretable insights into neural-network decisions. We investigate the effects of face subregions (semantic contexts) and link the general image quality of face subregions with face image utility. The evaluation is performed on two difficult largescale datasets (LFW and VGGFace2) with three face recognition solutions (FaceNet, SphereFace, and ArcFace). In total, we applied four face image quality assessment methods and one general image quality assessment method on four face subregions (eyes, mouth, nose, and tightly cropped face region) and the aligned faces. In addition, the effect of fusion of different face subregions was investigated to increase the robustness of the outcomesen
dc.identifier.isbn978-3-88579-709-8
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/37457
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBIOSIG 2021 - Proceedings of the 20th International Conference of the Biometrics Special Interest Group
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-320
dc.subjectFace subregions
dc.subjectimage quality assessment
dc.subjectface image utility
dc.subjectface image quality
dc.titleThe relative contributions of facial parts qualities to the face image utilityen
dc.typeText/Conference Paper
gi.citation.endPage220
gi.citation.publisherPlaceBonn
gi.citation.startPage213
gi.conference.date15.-17. September 2021
gi.conference.locationInternational Digital Conference
gi.conference.sessiontitleFurther Conference Contributions

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
biosig2021_proceedings_22.pdf
Größe:
257.02 KB
Format:
Adobe Portable Document Format