Logo des Repositoriums
 

Analysis and Optimization of Task Granularity on the Java Virtual Machine

dc.contributor.authorRosà, Andrea
dc.contributor.authorRosales, Eduardo
dc.contributor.authorBinder, Walter
dc.contributor.editorFelderer, Michael
dc.contributor.editorHasselbring, Wilhelm
dc.contributor.editorRabiser, Rick
dc.contributor.editorJung, Reiner
dc.date.accessioned2020-02-03T13:03:36Z
dc.date.available2020-02-03T13:03:36Z
dc.date.issued2020
dc.description.abstractOur article published in ACM Transactions on Programming Languages and Systems (TOPLAS) (which extends our work published in the proceedings of the 2018 IEEE/ACM International Symposium on Code Generation and Optimization (CGO 2018))presents a new methodology to accurately and efficiently collect the granularity of each executed task. Task granularity, i.e., the amount of work performed by parallel tasks, is a key performance attribute of parallel applications. On the one hand, fine-grained tasksmay introduce considerable parallelization overheads. On the other hand, coarse-grained tasks may not fully utilize the available CPU cores, leading to missed parallelization opportunities. We implement our methodology in tgp, a novel task-granularity profiler that collects carefully selected metrics from the whole system stack with low overhead, and helps developers locate performance and scalability problems. We analyze task granularity in the DaCapo, ScalaBench, and Spark Perf benchmark suites, revealing inefficiencies related to fine-grained and coarse-grained tasks in several applications We demonstrate that the collected task-granularity profiles are actionable by optimizing task granularity in several applications, achieving speedups up to a factor of 5.9x. tgp is available open-source at https://github.com/fithos/tgp/en
dc.identifier.doi10.18420/SE2020_45
dc.identifier.isbn978-3-88579-694-7
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/31724
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofSoftware Engineering 2020
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-300
dc.subjectTask granularity
dc.subjecttask parallelism
dc.subjectperformance analysis and optimization
dc.subjectvertical profiling
dc.subjectactionable profiles
dc.subjectJava Virtual Machine
dc.titleAnalysis and Optimization of Task Granularity on the Java Virtual Machineen
dc.typeText/Conference Paper
gi.citation.endPage
gi.citation.publisherPlaceBonn
gi.citation.startPage147
gi.conference.date24.-28. Feburar 2020
gi.conference.locationInnsbruck, Austria
gi.conference.sessiontitlePerformance und Benchmarking

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
B15-02.pdf
Größe:
48.01 KB
Format:
Adobe Portable Document Format