Logo des Repositoriums
 

Deep Domain Adaption for Convolutional Neural Network (CNN) based Iris Segmentation: Solutions and Pitfalls

dc.contributor.authorJalilian, Ehsaneddin
dc.contributor.authorUhl, Andreas
dc.contributor.editorBrömme, Arslan
dc.contributor.editorBusch, Christoph
dc.contributor.editorDantcheva, Antitza
dc.contributor.editorRathgeb, Christian
dc.contributor.editorUhl, Andreas
dc.date.accessioned2020-09-15T13:01:31Z
dc.date.available2020-09-15T13:01:31Z
dc.date.issued2019
dc.description.abstractAddressing the lack of massive amounts of labeled training data, deep domain adaptation has been applied successfully in many applications of machine learning. We investigate the application of deep domain adaptation for CNN based iris segmentation, exploring available solutions and their corresponding strengths and pitfalls, with several major contributions. First, we provide a comprehensive survey of current deep domain adaptation methods according to the properties of data that cause the domains divergence. Second, after selecting credible methods, we evaluate their expedience in terms of iris segmentation performance. Third, we analyze and compare the performance against the state-of-the-art methods under these categories. Forth, potential shortfalls of current methods and several future directions are pointed out and discussed.en
dc.identifier.isbn978-3-88579-690-9
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/34239
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBIOSIG 2019 - Proceedings of the 18th International Conference of the Biometrics Special Interest Group
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-297
dc.subjectDeep domain adaptation
dc.subjectiris segmentation
dc.subjectconvolutional neural networks.
dc.titleDeep Domain Adaption for Convolutional Neural Network (CNN) based Iris Segmentation: Solutions and Pitfallsen
dc.typeText/Conference Paper
gi.citation.endPage70
gi.citation.publisherPlaceBonn
gi.citation.startPage59
gi.conference.date18.-20. September 2019
gi.conference.locationDarmstadt, Germany
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
BIOSIG_2019_paper_32.pdf
Größe:
2.79 MB
Format:
Adobe Portable Document Format