Logo des Repositoriums
 

In-Database Machine Learning: Gradient Descent and Tensor Algebra for Main Memory Database Systems

dc.contributor.authorSchüle, Maximilian
dc.contributor.authorSimonis, Frédéric
dc.contributor.authorHeyenbrock, Thomas
dc.contributor.authorKemper, Alfons
dc.contributor.authorGünnemann, Stephan
dc.contributor.authorNeumann, Thomas
dc.contributor.editorGrust, Torsten
dc.contributor.editorNaumann, Felix
dc.contributor.editorBöhm, Alexander
dc.contributor.editorLehner, Wolfgang
dc.contributor.editorHärder, Theo
dc.contributor.editorRahm, Erhard
dc.contributor.editorHeuer, Andreas
dc.contributor.editorKlettke, Meike
dc.contributor.editorMeyer, Holger
dc.date.accessioned2019-04-11T07:21:19Z
dc.date.available2019-04-11T07:21:19Z
dc.date.issued2019
dc.description.abstractMachine learning tasks such as regression, clustering, and classification are typically performed outside of database systems using dedicated tools, necessitating the extraction, transfor-mation, and loading of data. We argue that database systems when extended to enable automatic differentiation, gradient descent, and tensor algebra are capable of solving machine learning tasks more efficiently by eliminating the need for costly data communication. We demonstrate our claim by implementing tensor algebra and stochastic gradient descent using lambda expressions for loss functions as a pipelined operator in a main memory database system. Our approach enables common machine learning tasks to be performed faster than by extended disk-based database systems or as well as dedicated tools by eliminating the time needed for data extraction. This work aims to incorporate gradient descent and tensor data types into database systems, allowing them to handle a wider range of computational tasks.en
dc.identifier.doi10.18420/btw2019-16
dc.identifier.isbn978-3-88579-683-1
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/21700
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofBTW 2019
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) – Proceedings, Volume P-289
dc.titleIn-Database Machine Learning: Gradient Descent and Tensor Algebra for Main Memory Database Systemsen
gi.citation.endPage266
gi.citation.startPage247
gi.conference.date4.-8. März 2019
gi.conference.locationRostock
gi.conference.sessiontitleWissenschaftliche Beiträge

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
B6-1.pdf
Größe:
478.08 KB
Format:
Adobe Portable Document Format