Logo des Repositoriums
 
Konferenzbeitrag

Erweiterte Visuelle Benutzerschnittstellen für Big-Data-Analysen

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2020

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Benutzerfreundliche Schnittstellen, die sich sowohl durch intuitive Bedienung als auch durch ein leichtes Erlernen charakterisieren, bieten den Anwendern von Big-Data-Analysis Software oftmals nur allgemeine Informationen sowie eine geringe Interaktionsmöglichkeit. Im Gegensatz dazu und insbesondere in Situationen, in denen Anwender mehr Kontrolle über unterschiedliche Aspekte der Software benötigen, bieten End-User-Empowered-Schnittstellen spezialisierte Interaktionsmöglichkeiten, die eine gröđere Benutzungsvielfalt erlauben. Speziell in Big-Data-Analysis-Anwendungen ist es jedoch wichtig, den Anwendern eine Kontext-sensitive Benutzungsschnittstelle zur Verfügung zu stellen, deren Verhalten sich anhand der unterschiedlichen Anwender sowie deren individueller Anwendungsszenarien anpasst. Um diese Forschungsdiskrepanz in Bezug auf Kontext-Sensitivität sowie Informationsvisualisierung bei Big-Data-Analysis-Anwendungsszenarien zu schlieđen, wurde mit IVIS4BigData ein theoretisches Referenzmodell entwickelt, welches als modernes und innovatives Rahmenwerk für verteilte Big-Data-Analysis-Anwendungsszenarien dient.

Beschreibung

Bornschlegl, Marco (2020): Erweiterte Visuelle Benutzerschnittstellen für Big-Data-Analysen. Ausgezeichnete Informatikdissertationen 2019. Bonn: Gesellschaft für Informatik e.V.. ISBN: 978-3-88579-775-3. pp. 49-58. Schoss Dagstuhl, Deutschland. 17.-20. Mai 2020

Schlagwörter

Zitierform

DOI

Tags