Towards Collaborative Predictive Maintenance Leveraging Private Cross-Company Data
dc.contributor.author | Mohr, Marisa | |
dc.contributor.author | Becker, Christian | |
dc.contributor.author | Möller, Ralf | |
dc.contributor.author | Richter, Matthias | |
dc.contributor.editor | Reussner, Ralf H. | |
dc.contributor.editor | Koziolek, Anne | |
dc.contributor.editor | Heinrich, Robert | |
dc.date.accessioned | 2021-01-27T13:33:45Z | |
dc.date.available | 2021-01-27T13:33:45Z | |
dc.date.issued | 2021 | |
dc.description.abstract | The accuracy of a predictive maintenance model is largely determined by the available training data. This puts such machine learning systems out of reach for small and medium-sized production engineering companies, as they are often unable to provide training data in sufficient quality and quantity. Building a collaborative model by pooling training data across many companies would solve this issue, but this data cannot simply be consolidated in a central location while at the same time preserving data integrity and security. This paper enables a collaborative model for predictive maintenance on cross-company data without exposing participants' business information by connecting two recent methodologies: blockchain and federated learning. | en |
dc.identifier.doi | 10.18420/inf2020_39 | |
dc.identifier.isbn | 978-3-88579-701-2 | |
dc.identifier.pissn | 1617-5468 | |
dc.identifier.uri | https://dl.gi.de/handle/20.500.12116/34747 | |
dc.language.iso | en | |
dc.publisher | Gesellschaft für Informatik, Bonn | |
dc.relation.ispartof | INFORMATIK 2020 | |
dc.relation.ispartofseries | Lecture Notes in Informatics (LNI) - Proceedings, Volume P-307 | |
dc.subject | Industrial Internet of Things | |
dc.subject | Machine Learning | |
dc.subject | Blockchain | |
dc.subject | Federated Learning | |
dc.title | Towards Collaborative Predictive Maintenance Leveraging Private Cross-Company Data | en |
gi.citation.endPage | 432 | |
gi.citation.startPage | 427 | |
gi.conference.date | 28. September - 2. Oktober 2020 | |
gi.conference.location | Karlsruhe | |
gi.conference.sessiontitle | Künstliche Intelligenz für kleine und mittlere Unternehmen |
Dateien
Originalbündel
1 - 1 von 1
Vorschaubild nicht verfügbar
- Name:
- C5-3.pdf
- Größe:
- 160.62 KB
- Format:
- Adobe Portable Document Format