Logo des Repositoriums
 

Automatic Code Transformation of NetCDF Code for I/O Optimisation

dc.contributor.authorSquar, Jannek
dc.contributor.authorFuchs, Anna
dc.contributor.authorKuhn, Michael
dc.contributor.authorLudwig, Thomas
dc.date.accessioned2024-09-25T11:27:24Z
dc.date.available2024-09-25T11:27:24Z
dc.date.issued2024
dc.description.abstractEven small improvements to applications can have a huge impact when running on massive parallel systems. Domain experts often lack sufficient computer science expertise or face significant challenges when trying to implement new features such as data compression or parallel I/O. We present anextension to CATO, a code transformation tool that automatically inserts new features and optimisations into scientific code to demonstrate their use and benefits. It helps to overcome initial barriers and supports guided self-learning in a user-friendly way. In this work we implement and evaluate an LLVM pass to automatically find, analyse and transform an application using the netCDF API to optimise the runtime and memory as well as the storage footprint during the I/O phase of the application by inserting parallelisation and compression. Our evaluation shows good speedup and near-optimal memory usage when the modified application is run on distributed hardware using Lustre as the parallel file system backend.en
dc.identifier.issn0177-0454
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/44640
dc.language.isoen
dc.pubPlaceAachen
dc.publisherGesellschaft für Informatik e.V., Fachgruppe PARS
dc.relation.ispartofPARS-Mitteilungen: Vol. 36
dc.titleAutomatic Code Transformation of NetCDF Code for I/O Optimisationen
dc.typeText/Journal Article
mci.reference.pages27-36

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
pars2024_2.pdf
Größe:
182.09 KB
Format:
Adobe Portable Document Format