Logo des Repositoriums
 
Textdokument

ML-basierte Klassifizierung von E-Mails für die datenschutzkonforme Löschung und Archivierung

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Zusatzinformation

Datum

2022

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik, Bonn

Zusammenfassung

E-Mails enthalten in der Regel personenbezogene Daten, die den datenschutzrechtlichen Löschvorgaben unterliegen. Eine angemessene Umsetzung der Löschvorgaben stellt jedoch die verantwortlichen Unternehmen vor eine große Herausforderung, zumal nach Erfüllung des Verarbeitungszwecks oftmals unterschiedliche (spezial-)rechtliche Aufbewahrungspflichten einer sofortigen Löschung entgegenstehen. Für die Einhaltung von Lösch- und Aufbewahrungspflichten ist es zunächst erforderlich, E-Mails, die diesen Verpflichtungen unterliegen (z.B. Rechnungen) zu identifizieren. Dieser Beitrag untersucht, inwieweit E-Mails mithilfe von maschinellem Lernen (ML) klassifiziert werden können. Für auf diese Weise klassifizierte E-Mails kann im nächsten Schritt entschieden werden, ob sie gemäß den Anforderungen der Datenschutz-Grundverordnung (DSGVO) gelöscht oder gemäß gesetzlicher Aufbewahrungsfristen länger aufbewahrt und archiviert werden müssen. Der Beitrag beschreibt zudem die Entwicklung eines Proof-of-Concept in Form eines Add-ons für Microsoft Outlook, das Nutzern erlaubt, die in ihren Postfächern enthaltenen E-Mails zu klassifizieren.

Beschreibung

Kunz,Thomas; Waldmann,Ulrich (2022): ML-basierte Klassifizierung von E-Mails für die datenschutzkonforme Löschung und Archivierung. INFORMATIK 2022. DOI: 10.18420/inf2022_48. Gesellschaft für Informatik, Bonn. PISSN: 1617-5468. ISBN: 978-3-88579-720-3. pp. 589-600. Recht und Technik: Datenschutz im Diskurs (RuT). Hamburg. 26.-30. September 2022

Zitierform

Tags