Logo des Repositoriums
 

Low-resolution Iris Recognition via Knowledge Transfer

dc.contributor.authorFadi Boutros, Olga Kaehm
dc.contributor.editorBrömme, Arslan
dc.contributor.editorDamer, Naser
dc.contributor.editorGomez-Barrero, Marta
dc.contributor.editorRaja, Kiran
dc.contributor.editorRathgeb, Christian
dc.contributor.editorSequeira Ana F.
dc.contributor.editorTodisco, Massimiliano
dc.contributor.editorUhl, Andreas
dc.date.accessioned2022-10-27T10:19:31Z
dc.date.available2022-10-27T10:19:31Z
dc.date.issued2022
dc.description.abstractThis work introduces a novel approach for extremely low-resolution iris recognition based on deep knowledge transfer. This work starts by adapting the penalty margin loss to the iris recognition problem. This included novel analyses on the appropriate penalty margin for iris recognition. Additionally, this work presents analyses toward finding the optimal deeply learned representation dimension for the identity information embedded in the iris capture. Most importantly, this work proposes a training framework that aims at producing iris deep representations from extremely lowresolution that are similar to those of high resolution. This was realized by the controllable knowledge transfer of an iris recognition model trained for high-resolution images into a model that is specifically trained for extremely low-resolution irises. The presented approach leads to the reduction of the verification errors by more than 3 folds, in comparison to the traditionally trained model for low-resolution iris recognition.en
dc.identifier.doi10.1109/BIOSIG55365.2022.9896959
dc.identifier.isbn978-3-88579-723-4
dc.identifier.pissn1617-5498
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/39709
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBIOSIG 2022
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-329
dc.subjectIris recognition
dc.subjectknowledge transfer
dc.subjectdeep learning
dc.titleLow-resolution Iris Recognition via Knowledge Transferen
dc.typeText/Conference Paper
gi.citation.endPage300
gi.citation.publisherPlaceBonn
gi.citation.startPage293
gi.conference.date14.-16. September 2022
gi.conference.locationDarmstadt
gi.conference.sessiontitleFurther Conference Contributions

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
31-BIOSIG_2022_paper_65.pdf
Größe:
376.13 KB
Format:
Adobe Portable Document Format