Logo des Repositoriums
 

Voice Morphing: Two Identities in One Voice

dc.contributor.authorSushanta K. Pani, Anurag Chowdhury
dc.contributor.editorDamer, Naser
dc.contributor.editorGomez-Barrero, Marta
dc.contributor.editorRaja, Kiran
dc.contributor.editorRathgeb, Christian
dc.contributor.editorSequeira, Ana F.
dc.contributor.editorTodisco, Massimiliano
dc.contributor.editorUhl, Andreas
dc.date.accessioned2023-12-12T10:46:47Z
dc.date.available2023-12-12T10:46:47Z
dc.date.issued2023
dc.description.abstractIn a biometric system, each biometric sample or template is typically associated with a single identity. However, recent research has demonstrated the possibility of generating "morph" biometric samples that can successfully match more than a single identity. Morph attacks are now recognized as a potential security threat to biometric systems. However, most morph attacks have been studied on biometric modalities operating in the image domain, such as face, fingerprint, and iris. In this preliminary work, we introduce Voice Identity Morphing (VIM) - a voice-based morph attack that can synthesize speech samples that impersonate the voice characteristics of a pair of individuals. Our experiments evaluate the vulnerabilities of two popular speaker recognition systems, ECAPA-TDNN and x-vector, to VIM, with a success rate (MMPMR) of over 80% at a false match rate of 1% on the Librispeech dataset.en
dc.identifier.isbn978-3-88579-733-3
dc.identifier.issn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/43266
dc.language.isoen
dc.pubPlaceBonn
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBIOSIG 2023
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-339
dc.subjectMorphing
dc.subjectSecurity analysis of biometric components or systems; Speech and speaker recognition
dc.titleVoice Morphing: Two Identities in One Voiceen
dc.typeText/Conference Paper
mci.conference.date20.-22. September 2023
mci.conference.locationDarmstadt
mci.conference.sessiontitleRegular Research Papers
mci.reference.pages189-199

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
LNI_062.pdf
Größe:
225.54 KB
Format:
Adobe Portable Document Format