Logo des Repositoriums
 

Adapting Natural Language Processing Strategies for Stock Price Prediction

dc.contributor.authorVoigt, Frederic
dc.contributor.editorStolzenburg, Frieder
dc.date.accessioned2023-09-20T04:20:44Z
dc.date.available2023-09-20T04:20:44Z
dc.date.issued2023
dc.description.abstractDue to the parallels between Natural Language Processing (NLP) and stock price prediction (SPP) as a time series problem, an attempt is made to interpret SPP as an NLP problem. As adaptable techniques word vector representations, pre-trained language models, advanced recurrent neural networks, unsupervised learning methods, and multimodal methods are introduced and it is outlined how they can be transferred into the stock prediction domain.en
dc.identifier.doi10.18420/ki2023-dc-03
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/42403
dc.language.isoen
dc.pubPlaceBonn
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofDC@KI2023: Proceedings of Doctoral Consortium at KI 2023
dc.subjectStock Price Prediction; Financial Analysis; Quantitative Analysis; Fundamental Analysis; NLPen
dc.titleAdapting Natural Language Processing Strategies for Stock Price Predictionen
dc.typeText
gi.citation.endPage29
gi.citation.startPage20
gi.conference.date45195
gi.conference.locationBerlin
gi.conference.sessiontitleDoctoral Consortium at KI 2023
gi.document.qualitydigidoc

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
A3-paper.pdf
Größe:
171.96 KB
Format:
Adobe Portable Document Format