Logo des Repositoriums
 

Toward to Reduction of Bias for Gender and Ethnicity from Face Images using Automated Skin Tone Classification

dc.contributor.authorMolina, David
dc.contributor.authorCausa, Leonardo
dc.contributor.authorTapia, Juan
dc.contributor.editorBrömme, Arslan
dc.contributor.editorBusch, Christoph
dc.contributor.editorDantcheva, Antitza
dc.contributor.editorRaja, Kiran
dc.contributor.editorRathgeb, Christian
dc.contributor.editorUhl, Andreas
dc.date.accessioned2020-09-16T08:25:47Z
dc.date.available2020-09-16T08:25:47Z
dc.date.issued2020
dc.description.abstractThis paper proposes and analyzes a new approach for reducing the bias in gender caused by skin tone from faces based on transfer learning with fine-tuning. The categorization of the ethnicity was developed based on an objective method instead of a subjective Fitzpatrick scale. A Kmeans method was used to categorize the color faces using clusters of RGB pixel values. Also, a new database was collected from the internet and will be available upon request. Our method outperforms the state of the art and reduces the gender classification bias using the skin-type categorization. The best results were achieved with VGGNET architecture with 96.71% accuracy and 3.29% error rate.en
dc.identifier.isbn978-3-88579-700-5
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/34339
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBIOSIG 2020 - Proceedings of the 19th International Conference of the Biometrics Special Interest Group
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-306
dc.subjectGender classification
dc.subjectBias
dc.subjectSkin-Detection
dc.titleToward to Reduction of Bias for Gender and Ethnicity from Face Images using Automated Skin Tone Classificationen
dc.typeText/Conference Paper
gi.citation.endPage289
gi.citation.publisherPlaceBonn
gi.citation.startPage281
gi.conference.date16.-18. September 2020
gi.conference.locationInternational Digital Conference
gi.conference.sessiontitleFurther Conference Contributions

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
BIOSIG_2020_paper_48_update5.pdf
Größe:
806.98 KB
Format:
Adobe Portable Document Format