Logo des Repositoriums
 

End-to-end Off-angle Iris Recognition Using CNN Based Iris Segmentation

dc.contributor.authorJalilian, Ehsaneddin
dc.contributor.authorKarakaya, Mahmut
dc.contributor.authorUhl, Andreas
dc.contributor.editorBrömme, Arslan
dc.contributor.editorBusch, Christoph
dc.contributor.editorDantcheva, Antitza
dc.contributor.editorRaja, Kiran
dc.contributor.editorRathgeb, Christian
dc.contributor.editorUhl, Andreas
dc.date.accessioned2020-09-16T08:25:42Z
dc.date.available2020-09-16T08:25:42Z
dc.date.issued2020
dc.description.abstractWhile deep learning techniques are increasingly becoming a tool of choice for iris segmentation, yet there is no comprehensive recognition framework dedicated for off-angle iris recognition using such modules. In this work, we investigate the effect of different gaze-angles on the CNN based off-angle iris segmentations, and their recognition performance, introducing an improvement scheme to compensate for some segmentation degradations caused by the off-angle distortions. Also, we propose an off-angle parameterization algorithm to re-project the off-angle images back to frontal view. Taking benefit of these, we further investigate if: (i) improving the segmentation outputs and/or correcting the iris images before or after the segmentation, can compensate for off-angle distortions, or (ii) the generalization capability of the network can be improved, by training it on iris images of different gaze-angles. In each experimental step, segmentation accuracy and the recognition performance are evaluated, and the results are analyzed and compared.en
dc.identifier.isbn978-3-88579-700-5
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/34319
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBIOSIG 2020 - Proceedings of the 19th International Conference of the Biometrics Special Interest Group
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-306
dc.subjectOff-angle iris segmentation
dc.subjectOff-angle iris recognition
dc.subjectIris parameterization
dc.subjectConvolutional neural network
dc.subjectCNN
dc.titleEnd-to-end Off-angle Iris Recognition Using CNN Based Iris Segmentationen
dc.typeText/Conference Paper
gi.citation.endPage128
gi.citation.publisherPlaceBonn
gi.citation.startPage117
gi.conference.date16.-18. September 2020
gi.conference.locationInternational Digital Conference
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
BIOSIG_2020_paper_39_update.pdf
Größe:
2.72 MB
Format:
Adobe Portable Document Format