End-to-end Off-angle Iris Recognition Using CNN Based Iris Segmentation
dc.contributor.author | Jalilian, Ehsaneddin | |
dc.contributor.author | Karakaya, Mahmut | |
dc.contributor.author | Uhl, Andreas | |
dc.contributor.editor | Brömme, Arslan | |
dc.contributor.editor | Busch, Christoph | |
dc.contributor.editor | Dantcheva, Antitza | |
dc.contributor.editor | Raja, Kiran | |
dc.contributor.editor | Rathgeb, Christian | |
dc.contributor.editor | Uhl, Andreas | |
dc.date.accessioned | 2020-09-16T08:25:42Z | |
dc.date.available | 2020-09-16T08:25:42Z | |
dc.date.issued | 2020 | |
dc.description.abstract | While deep learning techniques are increasingly becoming a tool of choice for iris segmentation, yet there is no comprehensive recognition framework dedicated for off-angle iris recognition using such modules. In this work, we investigate the effect of different gaze-angles on the CNN based off-angle iris segmentations, and their recognition performance, introducing an improvement scheme to compensate for some segmentation degradations caused by the off-angle distortions. Also, we propose an off-angle parameterization algorithm to re-project the off-angle images back to frontal view. Taking benefit of these, we further investigate if: (i) improving the segmentation outputs and/or correcting the iris images before or after the segmentation, can compensate for off-angle distortions, or (ii) the generalization capability of the network can be improved, by training it on iris images of different gaze-angles. In each experimental step, segmentation accuracy and the recognition performance are evaluated, and the results are analyzed and compared. | en |
dc.identifier.isbn | 978-3-88579-700-5 | |
dc.identifier.pissn | 1617-5468 | |
dc.identifier.uri | https://dl.gi.de/handle/20.500.12116/34319 | |
dc.language.iso | en | |
dc.publisher | Gesellschaft für Informatik e.V. | |
dc.relation.ispartof | BIOSIG 2020 - Proceedings of the 19th International Conference of the Biometrics Special Interest Group | |
dc.relation.ispartofseries | Lecture Notes in Informatics (LNI) - Proceedings, Volume P-306 | |
dc.subject | Off-angle iris segmentation | |
dc.subject | Off-angle iris recognition | |
dc.subject | Iris parameterization | |
dc.subject | Convolutional neural network | |
dc.subject | CNN | |
dc.title | End-to-end Off-angle Iris Recognition Using CNN Based Iris Segmentation | en |
dc.type | Text/Conference Paper | |
gi.citation.endPage | 128 | |
gi.citation.publisherPlace | Bonn | |
gi.citation.startPage | 117 | |
gi.conference.date | 16.-18. September 2020 | |
gi.conference.location | International Digital Conference | |
gi.conference.sessiontitle | Regular Research Papers |
Dateien
Originalbündel
1 - 1 von 1
Lade...
- Name:
- BIOSIG_2020_paper_39_update.pdf
- Größe:
- 2.72 MB
- Format:
- Adobe Portable Document Format