Fast Approximated Nearest Neighbor Joins For Relational Database Systems
dc.contributor.author | Günther, Michael | |
dc.contributor.author | Thiele, Maik | |
dc.contributor.author | Lehner, Wolfgang | |
dc.contributor.editor | Grust, Torsten | |
dc.contributor.editor | Naumann, Felix | |
dc.contributor.editor | Böhm, Alexander | |
dc.contributor.editor | Lehner, Wolfgang | |
dc.contributor.editor | Härder, Theo | |
dc.contributor.editor | Rahm, Erhard | |
dc.contributor.editor | Heuer, Andreas | |
dc.contributor.editor | Klettke, Meike | |
dc.contributor.editor | Meyer, Holger | |
dc.date.accessioned | 2019-04-11T07:21:17Z | |
dc.date.available | 2019-04-11T07:21:17Z | |
dc.date.issued | 2019 | |
dc.description.abstract | K nearest neighbor search (kNN-Search) is a universal data processing technique and a fundamental operation for word embeddings trained by word2vec or related approaches. The benefits of operations on dense vectors like word embeddings for analytical functionalities of RDBMSs motivate an integration of kNN-Joins. However, kNN-Search, as well as kNN-Joins, have barely been integrated into relational database systems so far. In this paper, we develop an index structure for approximated kNN-Joins working well on high-dimensional data and provide an integration into PostgreSQL. The novel index structure is efficient for different cardinalities of the involved join partners. An evaluation of the system based on applications on word embeddings shows the benefits of such an integrated kNN-Join operation and the performance of the proposed approach. | en |
dc.identifier.doi | 10.18420/btw2019-15 | |
dc.identifier.isbn | 978-3-88579-683-1 | |
dc.identifier.pissn | 1617-5468 | |
dc.identifier.uri | https://dl.gi.de/handle/20.500.12116/21699 | |
dc.language.iso | en | |
dc.publisher | Gesellschaft für Informatik, Bonn | |
dc.relation.ispartof | BTW 2019 | |
dc.relation.ispartofseries | Lecture Notes in Informatics (LNI) – Proceedings, Volume P-289 | |
dc.subject | approximated nearest neighbor search | |
dc.subject | product quantization | |
dc.subject | RDBMS | |
dc.subject | word embeddings | |
dc.title | Fast Approximated Nearest Neighbor Joins For Relational Database Systems | en |
gi.citation.endPage | 244 | |
gi.citation.startPage | 225 | |
gi.conference.date | 4.-8. März 2019 | |
gi.conference.location | Rostock | |
gi.conference.sessiontitle | Wissenschaftliche Beiträge |
Dateien
Originalbündel
1 - 1 von 1