Logo des Repositoriums
 

Priors for Linear Differential Equations

dc.contributor.authorLange-Hegermann, Markus
dc.contributor.editorDavid, Klaus
dc.contributor.editorGeihs, Kurt
dc.contributor.editorLange, Martin
dc.contributor.editorStumme, Gerd
dc.date.accessioned2019-08-27T12:55:24Z
dc.date.available2019-08-27T12:55:24Z
dc.date.issued2019
dc.description.abstractWe algorithmically construct multi-output Gaussian process priors which satisfy linear differential equations. We parametrize all solutions of the differential equations using Gröbner bases for controllable systems. If successful, a push forward along the parametrization is the desired prior. This prior yields an interpretable machine learning model, which can combine linear differential equations with noisy data points.en
dc.identifier.doi10.18420/inf2019_38
dc.identifier.isbn978-3-88579-688-6
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/24986
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofINFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-294
dc.subjectGaussian process
dc.subjectregression
dc.subjectdifferential equation
dc.subjectkernel
dc.subjectGröbner basis
dc.titlePriors for Linear Differential Equationsen
dc.typeText/Conference Paper
gi.citation.endPage270
gi.citation.publisherPlaceBonn
gi.citation.startPage269
gi.conference.date23.-26. September 2019
gi.conference.locationKassel
gi.conference.sessiontitleData Science

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
paper3_15.pdf
Größe:
62.18 KB
Format:
Adobe Portable Document Format