Logo des Repositoriums
 

Towards Human-Centered AI: Psychological concepts as foundation for empirical XAI research

dc.contributor.authorWeitz, Katharina
dc.date.accessioned2022-11-22T09:48:31Z
dc.date.available2022-11-22T09:48:31Z
dc.date.issued2022
dc.description.abstractHuman-Centered AI is a widely requested goal for AI applications. To reach this is explainable AI promises to help humans to understand the inner workings and decisions of AI systems. While different XAI techniques have been developed to shed light on AI systems, it is still unclear how end-users with no experience in machine learning perceive these. Psychological concepts like trust, mental models, and self-efficacy can serve as instruments to evaluate XAI approaches in empirical studies with end-users. First results in applications for education, healthcare, and industry suggest that one XAI does not fit all. Instead, the design of XAI has to consider user needs, personal background, and the specific task of the AI system.en
dc.identifier.doi10.1515/itit-2021-0047
dc.identifier.pissn2196-7032
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/39746
dc.language.isoen
dc.publisherDe Gruyter
dc.relation.ispartofit - Information Technology: Vol. 64, No. 1-2
dc.subjecthuman-centered AI
dc.subjectexplainable AI
dc.subjectdeep neural networks
dc.titleTowards Human-Centered AI: Psychological concepts as foundation for empirical XAI researchen
dc.typeText/Journal Article
gi.citation.endPage75
gi.citation.publisherPlaceBerlin
gi.citation.startPage71
gi.conference.sessiontitleSelf-Portrayals of GI Junior Fellows

Dateien