Logo des Repositoriums
 

Advanced Face Presentation Attack Detection on Light Field Database

dc.contributor.authorChiesa, Valeria
dc.contributor.authorDugelay, Jean-Luc
dc.contributor.editorBrömme, Arslan
dc.contributor.editorBusch, Christoph
dc.contributor.editorDantcheva, Antitza
dc.contributor.editorRathgeb, Christian
dc.contributor.editorUhl, Andreas
dc.date.accessioned2019-06-17T10:00:25Z
dc.date.available2019-06-17T10:00:25Z
dc.date.issued2018
dc.description.abstractIn the last years several works have been focused on the impact of new sensors on face recognition. A particular interest has been addressed to technologies able to detect the depth of the scene as light field cameras. Together with person identification algorithms, new anti-spoofing methods customized for specific devices have to be investigated. In this paper, a new algorithm for presentation attack detection on light field face database is proposed. While distance between subject and camera is not a relevant information for standard 2D spoofing attacks, it could be important when using 3D cameras. We prove through three experiments that the proposed method based on depth map elaboration outperforms the existent algorithms in presentation attack detection on light field images.en
dc.identifier.isbn978-3-88579-676-4
dc.identifier.pissn1617-5469
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/23801
dc.language.isoen
dc.publisherKöllen Druck+Verlag GmbH
dc.relation.ispartofBIOSIG 2018 - Proceedings of the 17th International Conference of the Biometrics Special Interest Group
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-283
dc.subjectLight field
dc.subjectPresentation attack detection
dc.subjectAnti-spoofing
dc.subjectDepth map.
dc.titleAdvanced Face Presentation Attack Detection on Light Field Databaseen
dc.typeText/Conference Paper
gi.citation.publisherPlaceBonn
gi.conference.date26.-28. September 2018
gi.conference.locationDarmstadt

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
update_BIOSIG_2018_paper_33.pdf
Größe:
340.67 KB
Format:
Adobe Portable Document Format