Logo des Repositoriums
 

Curvelet transform-based features extraction for fingerprint identification

dc.contributor.authorGuesmi, Hanene
dc.contributor.authorTrichili, Hanene
dc.contributor.authorAlimi, Adel M.
dc.contributor.authorSolaiman, Basel
dc.contributor.editorBrömme, Arslan
dc.contributor.editorBusch, Christoph
dc.date.accessioned2018-11-19T13:16:41Z
dc.date.available2018-11-19T13:16:41Z
dc.date.issued2012
dc.description.abstractThe performance of the fingerprint identification process highly depends on its extractor of fingerprint features. So, to reduce the dimensionality of the fingerprint image and improve the identification rate, a fingerprint features extraction method based on Curvelet transform is proposed and presented in this paper. Thus, our paper focuses on presenting of our Curvelet-based fingerprint features extraction method. This method consists of two steps: decompose the fingerprint into set of sub-bands by the Curvelet transform and automatic extraction of the most discriminative statistical features of these sub-bands. An extensive experimental evaluation shows that the proposed method is effective and encouraging.en
dc.identifier.isbn978-3-88579-290-1
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/18317
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBIOSIG 2012
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-196
dc.titleCurvelet transform-based features extraction for fingerprint identificationen
dc.typeText/Conference Paper
gi.citation.endPage427
gi.citation.publisherPlaceBonn
gi.citation.startPage417
gi.conference.date06.-07. September 2012
gi.conference.locationDarmstadt
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
417.pdf
Größe:
194.16 KB
Format:
Adobe Portable Document Format