Logo des Repositoriums
 

An FPGA Avro Parser Generator for Accelerated Data Stream Processing

dc.contributor.authorHahn, Tobias
dc.contributor.authorSchüll, Daniel
dc.contributor.authorWildermann, Stefan
dc.contributor.authorTeich, Jürgen
dc.contributor.editorKönig-Ries, Birgitta
dc.contributor.editorScherzinger, Stefanie
dc.contributor.editorLehner, Wolfgang
dc.contributor.editorVossen, Gottfried
dc.date.accessioned2023-02-23T14:00:02Z
dc.date.available2023-02-23T14:00:02Z
dc.date.issued2023
dc.description.abstractBig Data applications frequently involve processing data streams encoded in semi-structured data formats such as JSON, Protobuf, or Avro.A major challenge in accelerating data stream processing on FPGAs is that the parsing of such data formats is usually highly complex.This is especially true for JSON parsing on FPGAs, which lies in the focus of related work.The parsing of the binary Avro format, on the other hand, is perfectly suited for being processed on FPGAs and can thus serve as an enabler for data stream processing on FPGAs.In this realm, we present a methodology for parsing, projection, and selection of Avro objects, which enforces an output format suitable for further processing on the FPGA.Moreover, we provide a generator to automatically create accelerators based on this methodology.The obtained accelerators can achieve significant speedups compared to CPU-based parsers, and at the same time require only very few FPGA resources.en
dc.identifier.doi10.18420/BTW2023-46
dc.identifier.isbn978-3-88579-725-8
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/40353
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBTW 2023
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-331
dc.subjectAvro
dc.subjectparsing
dc.subjectFPGA
dc.subjectsemi-structured data
dc.subjectaccelerator
dc.titleAn FPGA Avro Parser Generator for Accelerated Data Stream Processingen
dc.typeText/Conference Paper
gi.citation.endPage749
gi.citation.publisherPlaceBonn
gi.citation.startPage729
gi.conference.date06.-10. März 2023
gi.conference.locationDresden, Germany

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
C1-3.pdf
Größe:
515.41 KB
Format:
Adobe Portable Document Format