Logo des Repositoriums
 

Using machine learning to determine attention towards public displays from skeletal data

dc.contributor.authorLacher, Jonas
dc.contributor.authorBieschke, Laura
dc.contributor.authorMichalowski, Florian
dc.contributor.authorMünch, Johanes
dc.date.accessioned2023-08-24T06:24:28Z
dc.date.available2023-08-24T06:24:28Z
dc.date.issued2023
dc.description.abstractWe develop a classifier model trained to analyze anonymized skeletal data of passers-by at interactive public displays to determine whether an interaction has occured. The test setup and data collection methods are described. The skeletal data is preprocessed to highlight more relevant bodyparts. The performance of the finished model will be evaluated statistically and compared to approaches using human observers from other research.de
dc.identifier.doi10.18420/muc2023-mci-ws13-293
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/42126
dc.publisherGI
dc.relation.ispartofMensch und Computer 2023 - Workshopband
dc.relation.ispartofseriesMensch und Computer
dc.subjectmachine learning
dc.subjectattention
dc.subjectskeletal data
dc.subjectpublic display
dc.subjectevaluation
dc.titleUsing machine learning to determine attention towards public displays from skeletal datade
dc.typeText/Workshop Paper
gi.conference.date3.-6. September 2023
gi.conference.locationRapperswil
gi.conference.sessiontitleMCI-WS13: Methods and Tools for (Semi-)Automated Evaluation in Long-Term In-the-Wild Deployment Studies

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
muc23-mci-ws13-293.pdf
Größe:
419.16 KB
Format:
Adobe Portable Document Format