A Semantic-Based Method for Teaching Industrial Robots New Tasks
dc.contributor.author | Ramirez-Amaro, Karinne | |
dc.contributor.author | Dean-Leon, Emmanuel | |
dc.contributor.author | Bergner, Florian | |
dc.contributor.author | Cheng, Gordon | |
dc.date.accessioned | 2021-04-23T09:25:49Z | |
dc.date.available | 2021-04-23T09:25:49Z | |
dc.date.issued | 2019 | |
dc.description.abstract | This paper presents the results of the Artificial Intelligence (AI) method developed during the European project “Factory-in-a-day”. Advanced AI solutions, as the one proposed, allow a natural Human–Robot-collaboration, which is an important capability of robots in industrial warehouses. This new generation of robots is expected to work in heterogeneous production lines by efficiently interacting and collaborating with human co-workers in open and unstructured dynamic environments. For this, robots need to understand and recognize the demonstrations from different operators. Therefore, a flexible and modular process to program industrial robots has been developed based on semantic representations. This novel learning by demonstration method enables non-expert operators to program new tasks on industrial robots. | de |
dc.identifier.doi | 10.1007/s13218-019-00582-5 | |
dc.identifier.pissn | 1610-1987 | |
dc.identifier.uri | http://dx.doi.org/10.1007/s13218-019-00582-5 | |
dc.identifier.uri | https://dl.gi.de/handle/20.500.12116/36225 | |
dc.publisher | Springer | |
dc.relation.ispartof | KI - Künstliche Intelligenz: Vol. 33, No. 2 | |
dc.relation.ispartofseries | KI - Künstliche Intelligenz | |
dc.subject | Knowledge and reasoning | |
dc.subject | Semantic representations | |
dc.subject | Teaching by demonstration | |
dc.title | A Semantic-Based Method for Teaching Industrial Robots New Tasks | de |
dc.type | Text/Journal Article | |
gi.citation.endPage | 122 | |
gi.citation.startPage | 117 |