Zeitschriftenartikel
Kostensensitive Klassifikation mit Random Forest
Vorschaubild nicht verfügbar
Volltext URI
Dokumententyp
Text/Journal Article
Zusatzinformation
Datum
2009
Autor:innen
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Verlag
Springer
Zusammenfassung
Entscheidungsbaumverfahren repräsentieren einen etablierten Ansatz zur Erstellung von Klassifikationsmodellen, mit deren Hilfe verschiedene Planungs- und Entscheidungsprobleme unterstützt werden können. In der Literaturfinden sich zahlreiche Vorschläge für erweiterte Entscheidungsbaumverfahren, wobei der sogenannte Random-Forest-Algorithmus als besonders leistungsfähig angesehen werden kann. Ein konstituierendes Merkmal betrieblicher Klassifikationsprobleme besteht allerdings darin, dass fehlerhafte Prognosen mit unterschiedlichen Kosten assoziiert sind. Deswegen soll die Eignung von Random Forest zur kostensensitiven Klassifikation in dem vorliegenden Beitrag genauer untersucht werden. In diesem Rahmen wird der Grenznutzen algorithmischer Modifikationen gegenüber dem ursprünglichen Entscheidungsbaumprinzip erhoben, um die Effizienz einer konkreten Erweiterung kritisch zu beleuchten. Der Untersuchungsansatz soll damit auch allgemeine Hinweise geben, wie der zu erwartende Nutzen aus einer Implementierung von erweiterten Entscheidungsbaumverfahren geeignet quantifiziert werden kann.