Logo des Repositoriums
 
Textdokument

Cluster Flow - an Advanced Concept for Ensemble-Enabling, Interactive Clustering

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Zusatzinformation

Datum

2021

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Quelle

Verlag

Gesellschaft für Informatik, Bonn

Zusammenfassung

Even though most clustering algorithms serve knowledge discovery in fields other than computer science, most of them still require users to be familiar with programming or data mining to some extent. As that often prevents efficient research, we developed an easy to use, highly explainable clustering method accompanied by an interactive tool for clustering. It is based on intuitively understandable kNN graphs and the subsequent application of adaptable filters, which can be combined ensemble-like and iteratively and prune unnecessary or misleading edges. For a first overview of the data, fully automatic predefined filter cascades deliver robust results. A selection of simple filters and combination methods that can be chosen interactively yield very good results on benchmark datasets compared to various algorithms.

Beschreibung

Obermeier, Sandra; Beer, Anna; Wahl, Florian; Seidl, Thomas (2021): Cluster Flow - an Advanced Concept for Ensemble-Enabling, Interactive Clustering. BTW 2021. DOI: 10.18420/btw2021-09. Gesellschaft für Informatik, Bonn. PISSN: 1617-5468. ISBN: 978-3-88579-705-0. pp. 175-194. ML & Data Science. Dresden. 13.-17. September 2021

Zitierform

Tags