Logo des Repositoriums
 

Why interval arithmetic is so useful

dc.contributor.authorHijazi, Y.
dc.contributor.authorHagen, H.
dc.contributor.authorHansen, C. D.
dc.contributor.authorJoy, K. I.
dc.contributor.editorHagen, Hans
dc.contributor.editorHering-Bertram, Martin
dc.contributor.editorGarth, Christoph
dc.date.accessioned2017-09-23T07:01:44Z
dc.date.available2017-09-23T07:01:44Z
dc.date.issued2008
dc.description.abstractInterval arithmetic was introduced by Ramon Moore [Moo66] in the 1960s as an approach to bound rounding errors in mathematical computation. The theory of interval analysis emerged considering the computation of both the exact solution and the error term as a single entity, i.e. the interval. Though a simple idea, it is a very powerful technique with numerous applications in mathematics, computer science, and engineering. In this survey we discuss the basic concepts of interval arithmetic and some of its extensions, and review successful applications of this theory in particular in computer science.en
dc.identifier.isbn978-3-88579-441-7
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/4619
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofVisualization of large and unstructured data sets
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-7
dc.titleWhy interval arithmetic is so usefulen
gi.citation.endPage163
gi.citation.publisherPlaceBonn
gi.citation.startPage148
gi.conference.date9. - 11. September 2007
gi.conference.locationKaiserslautern

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
148.pdf
Größe:
231.89 KB
Format:
Adobe Portable Document Format