Logo des Repositoriums
 

Knowledge Self-Adaptive Multi-Agent Learning

dc.contributor.authorReichhuber, Simon
dc.contributor.editorDraude, Claude
dc.contributor.editorLange, Martin
dc.contributor.editorSick, Bernhard
dc.date.accessioned2019-08-27T13:00:25Z
dc.date.available2019-08-27T13:00:25Z
dc.date.issued2019
dc.description.abstractIn this paper concepts of a starting Doctoral Dissertation are presented, discussing the question how agents constructed according to Organic Computing methodologies can autonomously identify Knowledge Sources and adapt them to their learning procedure. Achieving this, the fields of Multi-Agent Learning, Organic Computing, Transfer Learning, and Online Learning are combined to an unified architecture. The focus of the work is on the real-time evaluation of knowledge sources. In order to show the practical use case of such systems, the author presents two scenarios. The first, collaborative crawling, is an information retrieval task, hence it deals with knowledge distributed over multiple websites. Whereas the latter is designed to run in a virtual space, the second, denoted as machine park collaboration, can be implemented in industrial 4.0 fields of the real world.en
dc.identifier.doi10.18420/inf2019_ws54
dc.identifier.isbn978-3-88579-689-3
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/25090
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofINFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft (Workshop-Beiträge)
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-295
dc.subjectOrganic Computing
dc.subjectOnline Learning
dc.subjectMulti-Agent Learning
dc.subjectTransfer Learning
dc.titleKnowledge Self-Adaptive Multi-Agent Learningen
dc.typeText/Conference Paper
gi.citation.endPage515
gi.citation.publisherPlaceBonn
gi.citation.startPage507
gi.conference.date23.-26. September 2019
gi.conference.locationKassel
gi.conference.sessiontitleOrganic Computing Doctoral Dissertation Colloquium

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
paper11_04.pdf
Größe:
235.39 KB
Format:
Adobe Portable Document Format