Logo des Repositoriums
 

Explainable Diagnosis of COVID-19 from Chest X-ray Images via CNNs

dc.contributor.authorArkan, Emre
dc.contributor.authorBeckert, Jan Malte
dc.contributor.editorGesellschaft für Informatik
dc.date.accessioned2021-12-15T10:17:08Z
dc.date.available2021-12-15T10:17:08Z
dc.date.issued2021
dc.description.abstractThis work demonstrates how Convolutional Neural Networks ( CNN s) can be used to identify signs of COVID-19 from Chest X-rays (CXR s) and discusses the challenges of deep learning with small datasets. In order to validate the model’s performance, two novel explanation methods LIME and Grad-CAM are explored. Additionally, they serve to further increase users’ confidence in specific classifications. Since the explanation results revealed model biases, additional preprocessing mechanisms were explored: A U-Net-based lung segmenter is introduced to the preprocessing pipeline, which masks all non-lung parts of the CXRs images. Subsequently, the segmentation and non-segmentation results were evaluated with regard to both their performance metrics and interpreted explanation results.en
dc.identifier.isbn978-3-88579-751-7
dc.identifier.pissn1614-3213
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/37773
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofSKILL 2021
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Seminars, Volume S-17
dc.subjectCOVID-19
dc.subjectChest X-ray
dc.subjectCNN
dc.subjectGrad-CAM
dc.subjectLIME
dc.subjectExplainable AI
dc.titleExplainable Diagnosis of COVID-19 from Chest X-ray Images via CNNsen
gi.citation.endPage150
gi.citation.startPage139
gi.conference.date28. September und 01. Oktober 2021
gi.conference.locationBerlin
gi.conference.sessiontitleSKILL 2021

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
A4-2.pdf
Größe:
975.59 KB
Format:
Adobe Portable Document Format