Logo des Repositoriums
 

Recommenders benchmark framework

dc.contributor.authorDayan, Aviram
dc.contributor.authorKatz, Guy
dc.contributor.authorLüke, Karl-Heinz
dc.contributor.authorRokach, Lior
dc.contributor.authorShapira, Bracha
dc.contributor.authorSchwaiger, Roland
dc.contributor.authorAydin, Aykan
dc.contributor.authorFishel, Radmila
dc.contributor.authorBiadsy, Nassem
dc.contributor.editorEichler, Gerald
dc.contributor.editorKüpper, Axel
dc.contributor.editorSchau, Volkmar
dc.contributor.editorFouchal, Hacène
dc.contributor.editorUnger, Herwig
dc.contributor.editorEichler, Gerald
dc.contributor.editorKüpper, Axel
dc.contributor.editorSchau, Volkmar
dc.contributor.editorFouchal, Hacène
dc.contributor.editorUnger, Herwig
dc.date.accessioned2019-01-11T09:29:02Z
dc.date.available2019-01-11T09:29:02Z
dc.date.issued2011
dc.description.abstractRecommender Systems are software tools and techniques providing suggestions for items to be of use to a user. Recommender systems have proven to be a valuable means for online users to cope with the virtual information overload and have become one of the most powerful and popular tools in electronic commerce. Correspondingly, various techniques for recommendation generation have been proposed during the last decade. In this paper we present a new benchmark framework. It allows researchers or practitioners to quickly try out and compare different recommendation methods on new data sets. Extending the framework is easy thanks to a simple and well-defined Application Programming Interface (API). It contains a plug-in mechanism allowing others to develop their own algorithms and incorporate them in the framework. An interactive graphical user interface is provided for setting new benchmarks, integrate new plug-ins with the framework, setting up configurations and exploring benchmark results.en
dc.identifier.isbn978-3-88579-280-2
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/18981
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartof11th International Conference on Innovative Internet Community Systems (I2CS 2011)
dc.relation.ispartof11th International Conference on Innovative Internet Community Systems (I2CS 2011)
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-186
dc.subjectE-commerce
dc.subjectInformation Retrieval
dc.subjectRecommender Systems
dc.subjectMachine Learning Software
dc.subjectData Visualization
dc.titleRecommenders benchmark frameworken
dc.typeText/Conference Paper
gi.citation.endPage126
gi.citation.publisherPlaceBonn
gi.citation.startPage115
gi.conference.dateJune 15-17, 2011
gi.conference.locationBerlin
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
115.pdf
Größe:
276.54 KB
Format:
Adobe Portable Document Format