Logo des Repositoriums
 
Zeitschriftenartikel

Search, Abstractions and Learning in Real-Time Strategy Games

Vorschaubild nicht verfügbar

Volltext URI

Dokumententyp

Text/Journal Article

Zusatzinformation

Datum

2020

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Springer

Zusammenfassung

Real-Time Strategy Games’ large state and action spaces pose a significant hurdle to traditional AI techniques. We propose decomposing the game into sub-problems and integrating the partial solutions into action scripts that can be used as abstract actions by a search or machine learning algorithm. The resulting high level algorithm produces sound strategic choices, and can then be combined with a low-level search algorithm to refine tactical choices. We show strong results in SparCraft, Starcraft: Brood War and $$\mu $$ μ RTS against state-of-the-art agents. We expect advances in RTS AI can be used in commercial videogames for playtesting and game balancing, while also having possible real-world applications.

Beschreibung

Barriga, Nicolas A. (2020): Search, Abstractions and Learning in Real-Time Strategy Games. KI - Künstliche Intelligenz: Vol. 34, No. 1. DOI: 10.1007/s13218-019-00614-0. Springer. PISSN: 1610-1987. pp. 101-103

Zitierform

Tags