Logo des Repositoriums
 
Konferenzbeitrag

Using high-resolution drone data to assess apparent agricultural field heterogeneity at different spatial resolutions

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2022

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Fertilizer distribution can be improved by the use of variable rate technology with which plants only receive the amount of fertilizer they actually need. This amount is often calculated with vegetations indexes, such as the NDVI. The NDVI can be derived from drones or satellites. Drones offer more high-resolution imagery than satellites, but satellite data is more readily available. This study focuses on the spatio-temporal difference of apparent field heterogeneity at different spatial resolutions, resampled to 0.5 m and 20 m from high-resolution drone data, throughout the vegetation period and the error induced by low-resolution image data.

Beschreibung

Merz, Quirina Noëmi; Walter, Achim; Aasen, Helge (2022): Using high-resolution drone data to assess apparent agricultural field heterogeneity at different spatial resolutions. 42. GIL-Jahrestagung, Künstliche Intelligenz in der Agrar- und Ernährungswirtschaft. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-711-1. pp. 195-200. Tänikon, Online. 21.-22. Februar 2022

Zitierform

DOI

Tags