Konferenzbeitrag

prospective.HARVEST – Optimizing Planning of Agricultural Harvest Logistic Chains

Vorschaubild nicht verfügbar
Volltext URI
Dokumententyp
Text/Conference Paper
Datum
2020
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Quelle
40. GIL-Jahrestagung, Digitalisierung für Mensch, Umwelt und Tier
Verlag
Gesellschaft für Informatik e.V.
Zusammenfassung
The research and development project “prospective.HARVEST” aims at optimizing the process chain of silo maize harvesting, based on a predictive approach using prognosis data. New methods and tools have been developed utilizing remote and in-situ (geo-) data from a variety of data sources in order to enable farmers to optimize their logistic chains. Optimizations are computed as recommendations on several layers of the harvest process, from monitoring the crop over planning the inter-field and in-field coordination of harvesters and transport vehicles up to the surveillance and dynamic replanning of the ongoing harvest execution.
Beschreibung
de Wall, Arne; Danowski-Buhren, Christian; Wytzisk-Arens, Andreas; Lingemann, Kai; Focke Martinez, Santiago (2020): prospective.HARVEST – Optimizing Planning of Agricultural Harvest Logistic Chains. 40. GIL-Jahrestagung, Digitalisierung für Mensch, Umwelt und Tier. DOI: Precision Farming, Smart Farming, Planning, Maize Harvesting, Logistic Chains. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-693-0. pp. 55-60. Weihenstephan, Freising. 17.-18. Februar 2020
Schlagwörter
Zitierform
Tags