Logo des Repositoriums
 
Konferenzbeitrag

prospective.HARVEST – Optimizing Planning of Agricultural Harvest Logistic Chains

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2020

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

The research and development project “prospective.HARVEST” aims at optimizing the process chain of silo maize harvesting, based on a predictive approach using prognosis data. New methods and tools have been developed utilizing remote and in-situ (geo-) data from a variety of data sources in order to enable farmers to optimize their logistic chains. Optimizations are computed as recommendations on several layers of the harvest process, from monitoring the crop over planning the inter-field and in-field coordination of harvesters and transport vehicles up to the surveillance and dynamic replanning of the ongoing harvest execution.

Beschreibung

de Wall, Arne; Danowski-Buhren, Christian; Wytzisk-Arens, Andreas; Lingemann, Kai; Focke Martinez, Santiago (2020): prospective.HARVEST – Optimizing Planning of Agricultural Harvest Logistic Chains. 40. GIL-Jahrestagung, Digitalisierung für Mensch, Umwelt und Tier. DOI: Precision Farming, Smart Farming, Planning, Maize Harvesting, Logistic Chains. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-693-0. pp. 55-60. Weihenstephan, Freising. 17.-18. Februar 2020

Schlagwörter

Zitierform

Tags