Shuffled Patch-Wise Supervision for Presentation Attack Detection
dc.contributor.author | Kantarcı, Alperen | |
dc.contributor.author | Dertli, Hasan | |
dc.contributor.author | Ekenel, Hazım Kemal | |
dc.contributor.editor | Brömme, Arslan | |
dc.contributor.editor | Busch, Christoph | |
dc.contributor.editor | Damer, Naser | |
dc.contributor.editor | Dantcheva, Antitza | |
dc.contributor.editor | Gomez-Barrero, Marta | |
dc.contributor.editor | Raja, Kiran | |
dc.contributor.editor | Rathgeb, Christian | |
dc.contributor.editor | Sequeira, Ana | |
dc.contributor.editor | Uhl, Andreas | |
dc.date.accessioned | 2021-10-04T08:43:52Z | |
dc.date.available | 2021-10-04T08:43:52Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Face anti-spoofing is essential to prevent false facial verification by using a photo, video, mask, or a different substitute for an authorized person's face. Most of the state-of-the-art presentation attack detection (PAD) systems suffer from overfitting, where they achieve near-perfect scores on a single dataset but fail on a different dataset with more realistic data. This problem drives researchers to develop models that perform well under real-world conditions. This is an especially challenging problem for frame-based presentation attack detection systems that use convolutional neural networks (CNN). To this end, we propose a new PAD approach, which combines pixel-wise binary supervision with patch-based CNN. We believe that training a CNN with face patches allows the model to distinguish spoofs without learning background or dataset-specific traces. We tested the proposed method both on the standard benchmark datasets ---Replay-Mobile, OULU-NPU--- and on a real-world dataset. The proposed approach shows its superiority on challenging experimental setups. Namely, it achieves higher performance on OULU-NPU protocol 3, 4 and on inter-dataset real-world experiments. | en |
dc.identifier.isbn | 978-3-88579-709-8 | |
dc.identifier.pissn | 1617-5468 | |
dc.identifier.uri | https://dl.gi.de/handle/20.500.12116/37473 | |
dc.language.iso | en | |
dc.publisher | Gesellschaft für Informatik e.V. | |
dc.relation.ispartof | BIOSIG 2021 - Proceedings of the 20th International Conference of the Biometrics Special Interest Group | |
dc.relation.ispartofseries | Lecture Notes in Informatics (LNI) - Proceedings, Volume P-315 | |
dc.subject | Face antispoofing | |
dc.subject | Presentation attack detection | |
dc.subject | Convolutional neural networks | |
dc.subject | Real-world dataset | |
dc.title | Shuffled Patch-Wise Supervision for Presentation Attack Detection | en |
dc.type | Text/Conference Paper | |
gi.citation.endPage | 70 | |
gi.citation.publisherPlace | Bonn | |
gi.citation.startPage | 61 | |
gi.conference.date | 15.-17. September 2021 | |
gi.conference.location | International Digital Conference | |
gi.conference.sessiontitle | Regular Research Papers |
Dateien
Originalbündel
1 - 1 von 1
Lade...
- Name:
- biosig2021_proceedings_07.pdf
- Größe:
- 307.57 KB
- Format:
- Adobe Portable Document Format