Logo des Repositoriums
 
Konferenzbeitrag

Akustische Insektenerkennung – Deep Learning zur Klassifikation leisester Fluggeräusche

Vorschaubild nicht verfügbar

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2022

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Assistenzsysteme und Apps bieten ein großes Potenzial für die Steigerung der Effizienz und Nachhaltigkeit im Gartenbau. Im Bereich der Schädlingsbekämpfung haben alle aktuellen Apps und Systeme gemein, dass sie eine große Schwachstelle in der digitalen Erfassung der Insektenpopulationen im Gewächshaus aufweisen. Aus diesem Grund werden im Projekt IPMaide verschiedene sensorische Ansätze für die automatisierte Detektion von Insekten untersucht. Eine vielversprechende Möglichkeit ist die akustische Insektenerkennung. Hier sollen Methoden aus der Schädlingserkennung im Vorratsschutz mit neuesten Ansätzen im Bereich der Klassifikation von Geräuschen zusammengebracht werden, um eine Sensorlösung für die Insektenerkennung im Gewächshaus zu entwickeln. Für die nötige Datensatzerstellung wurde eine schallgeschützte Messumgebung entworfen und High- und Low-Cost-Messtechnik für akustische Aufnahmen unter Labor- und Realbedingungen verglichen. Die Ergebnisse zeigen, dass kostengünstigere Mikrofone gerade im relevanten tiefen Frequenzbereich unempfindlicher sind. Ein Lösungsansatz zur Filterung von Nutz- und Störgeräuschen stellen Array-Anordnungen der Mikrofone dar.

Beschreibung

Branding, Jelto; von Hoersten, Dieter; Wegener, Jens Karl (2022): Akustische Insektenerkennung – Deep Learning zur Klassifikation leisester Fluggeräusche. 42. GIL-Jahrestagung, Künstliche Intelligenz in der Agrar- und Ernährungswirtschaft. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-711-1. pp. 69-74. Tänikon, Online. 21.-22. Februar 2022

Zitierform

DOI

Tags