Logo des Repositoriums
 

Detecting plagiarism in text documents through grammar-analysis of authors

dc.contributor.authorTschuggnall, Michael
dc.contributor.authorSpecht, Günther
dc.contributor.editorMarkl, Volker
dc.contributor.editorSaake, Gunter
dc.contributor.editorSattler, Kai-Uwe
dc.contributor.editorHackenbroich, Gregor
dc.contributor.editorMitschang, Bernhard
dc.contributor.editorHärder, Theo
dc.contributor.editorKöppen, Veit
dc.date.accessioned2018-10-24T09:56:19Z
dc.date.available2018-10-24T09:56:19Z
dc.date.issued2013
dc.description.abstractThe task of intrinsic plagiarism detection is to find plagiarized sections within text documents without using a reference corpus. In this paper, the intrinsic detection approach Plag-Inn is presented which is based on the assumption that authors use a recognizable and distinguishable grammar to construct sentences. The main idea is to analyze the grammar of text documents and to find irregularities within the syntax of sentences, regardless of the usage of concrete words. If suspicious sentences are found by computing the pq-gram distance of grammar trees and by utilizing a Gaussian normal distribution, the algorithm tries to select and combine those sentences into potentially plagiarized sections. The parameters and thresholds needed by the algorithm are optimized by using genetic algorithms. Finally, the approach is evaluated against a large test corpus consisting of English documents, showing promising results.en
dc.identifier.isbn978-3-88579-608-4
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/17324
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofDatenbanksysteme für Business, Technologie und Web (BTW) 2028
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-214
dc.titleDetecting plagiarism in text documents through grammar-analysis of authorsen
dc.typeText/Conference Paper
gi.citation.endPage259
gi.citation.publisherPlaceBonn
gi.citation.startPage241
gi.conference.date13.-15. März 2013
gi.conference.locationMagdeburg
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
241.pdf
Größe:
2.11 MB
Format:
Adobe Portable Document Format