Logo des Repositoriums
 

Tensor Methods for Global Sensitivity Analysis

dc.contributor.authorBallester-Ripoll, Rafael
dc.contributor.authorParedes, Enrique G.
dc.contributor.authorPajarola, Renato
dc.contributor.editorDavid, Klaus
dc.contributor.editorGeihs, Kurt
dc.contributor.editorLange, Martin
dc.contributor.editorStumme, Gerd
dc.date.accessioned2019-08-27T12:55:24Z
dc.date.available2019-08-27T12:55:24Z
dc.date.issued2019
dc.description.abstractSobol indices and other, more recent quantities of interest (such as the effective and mean dimensions, the dimension distribution, or the Shapley values) are of great aid in sensitivity analysis, uncertainty quantification, and model interpretation. Unfortunately, computing such indices is still challenging for high-dimensional systems.We propose the tensor train decomposition (TT) as a unified framework for surrogate modeling and sensitivity analysis of independently distributed variables. To this end, we introduce the Sobol tensor train (Sobol TT) data structure, which compactly represents variance components for all possible joint variable interactions of any order. Our formulation allows efficient aggregation and subselection operations, and we are able to obtain related Sobol indices and other related quantities at low computational cost.en
dc.identifier.doi10.18420/inf2019_41
dc.identifier.isbn978-3-88579-688-6
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/24990
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofINFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-294
dc.subjectsensitivity analysis
dc.subjectsobol indices
dc.subjectsurrogate modeling
dc.subjectdata visualization
dc.subjectmultidimensional data analytics
dc.subjecttensor approximation
dc.titleTensor Methods for Global Sensitivity Analysisen
dc.typeText/Conference Paper
gi.citation.endPage276
gi.citation.publisherPlaceBonn
gi.citation.startPage275
gi.conference.date23.-26. September 2019
gi.conference.locationKassel
gi.conference.sessiontitleData Science

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
paper3_18.pdf
Größe:
78.67 KB
Format:
Adobe Portable Document Format