Logo des Repositoriums
 

Improved age prediction from biometric data using multimodal configurations

dc.contributor.authorErbilek, Meryem
dc.contributor.authorFairhurst, Michael
dc.contributor.authorDa Costa-Abreu, Márjory
dc.contributor.editorBrömme, Arslan
dc.contributor.editorBusch, Christoph
dc.date.accessioned2017-07-26T10:54:16Z
dc.date.available2017-07-26T10:54:16Z
dc.date.issued2014
dc.description.abstractThe prediction of individual characteristics from biometric data which falls short of full identity prediction is nevertheless a valuable capability in many practical applications. This paper considers age prediction in two biometric modalities (iris and handwritten signature) and explores how different feature types and classification strategies can be used to overcome possible constraints in different data capture scenarios. Importantly, the paper also explores for the first time the use of multimodal combination of these two modalities in an age prediction task.en
dc.identifier.isbn978-3-88579-624-4
dc.identifier.pissn1617-5468
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBIOSIG 2014
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-230
dc.titleImproved age prediction from biometric data using multimodal configurationsen
dc.typeText/Conference Paper
gi.citation.endPage186
gi.citation.publisherPlaceBonn
gi.citation.startPage179
gi.conference.date10.-12. September 2014
gi.conference.locationDarmstadt

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
179.pdf
Größe:
94.03 KB
Format:
Adobe Portable Document Format