Logo des Repositoriums
 

Sub-byte quantization of Mobile Face Recognition Convolutional Neural Networks

dc.contributor.authorSebastian Bunda, Luuk Spreeuwers and Chris Zeinstra
dc.contributor.editorBrömme, Arslan
dc.contributor.editorDamer, Naser
dc.contributor.editorGomez-Barrero, Marta
dc.contributor.editorRaja, Kiran
dc.contributor.editorRathgeb, Christian
dc.contributor.editorSequeira Ana F.
dc.contributor.editorTodisco, Massimiliano
dc.contributor.editorUhl, Andreas
dc.date.accessioned2022-10-27T10:19:29Z
dc.date.available2022-10-27T10:19:29Z
dc.date.issued2022
dc.description.abstractConverting convolutional neural networks such as MobileNets to a full integer representation is already quite a popular method to reduce the size and computational footprint of classification networks but its effect on face recognition networks is relatively unexplored. This work presents a method to reduce the size of MobileFaceNet using sub-byte quantization of the weights and activations. It was found that 8-bit and 4-bit versions of MobileFaceNet can be obtained with 98.68% and 98.63% accuracy on the LFW dataset which reduces the footprint to 25% and 12.5% of the original weights respectively. Using mixed-precision, an accuracy of 98.17% can be achieved whilst requiring only 10% of the original weight footprint. It is expected that with a larger training dataset, higher accuracies can be achieved.en
dc.identifier.doi10.1109/BIOSIG55365.2022.9897025
dc.identifier.isbn978-3-88579-723-4
dc.identifier.pissn1617-5490
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/39700
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBIOSIG 2022
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-329
dc.subjectResource Limited Face Recognition
dc.subjectDeep Neural Networks
dc.subjectQKeras
dc.subjectSub-byte Quantization
dc.titleSub-byte quantization of Mobile Face Recognition Convolutional Neural Networksen
dc.typeText/Conference Paper
gi.citation.endPage236
gi.citation.publisherPlaceBonn
gi.citation.startPage229
gi.conference.date14.-16. September 2022
gi.conference.locationDarmstadt
gi.conference.sessiontitleFurther Conference Contributions

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
23-BIOSIG_2022_paper_4.pdf
Größe:
1.48 MB
Format:
Adobe Portable Document Format