Konferenzbeitrag
Advanced analysis and modelling tools for spatial environmental data. Case study: indoor radon data in Switzerland
Vorschaubild nicht verfügbar
Volltext URI
Dokumententyp
Text/Conference Paper
Zusatzinformation
Datum
2004
Autor:innen
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Quelle
Verlag
Editions du Tricorne
Zusammenfassung
The present work deals with development and adaptation of advanced geostatistical models and machine learning algorithms (statistical learning theory – Support Vector Machines) for comprehensive analysis and decision-oriented modelling of environmental spatial data. The real case study is based on indoor radon data. The inherent high variability at different spatial scales of noisy indoor radon measurements coupled with the heavy clustering effect of houses locations make this dataset an excellent candidate to assess the feasibility of traditional and advanced models, trend and risk mapping at local and regional scales.