Logo des Repositoriums
 

Fast CSV Loading Using GPUs and RDMA for In-Memory Data Processing

dc.contributor.authorKumaigorodski, Alexander
dc.contributor.authorLutz, Clemens
dc.contributor.authorMarkl, Volker
dc.contributor.editorKai-Uwe Sattler
dc.contributor.editorMelanie Herschel
dc.contributor.editorWolfgang Lehner
dc.date.accessioned2021-03-16T07:57:09Z
dc.date.available2021-03-16T07:57:09Z
dc.date.issued2021
dc.description.abstractComma-separated values (CSV) is a widely-used format for data exchange. Due to the format's prevalence, virtually all industrial-strength database systems and stream processing frameworks support importing CSV input. However, loading CSV input close to the speed of I/O hardware is challenging. Modern I/O devices such as InfiniBand NICs and NVMe SSDs are capable of sustaining high transfer rates of 100 Gbit/s and higher. At the same timeen
dc.identifier.doi10.18420/btw2021-01
dc.identifier.isbn978-3-88579-705-0
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/35792
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofBTW 2021
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-311
dc.subjectCSV
dc.subjectParsing
dc.subjectGPU
dc.subjectCUDA
dc.subjectRDMA
dc.subjectInfiniBand
dc.titleFast CSV Loading Using GPUs and RDMA for In-Memory Data Processingen
gi.citation.endPage38
gi.citation.startPage19
gi.conference.date13.-17. September 2021
gi.conference.locationDresden
gi.conference.sessiontitleDatabase Technology

Dateien

Originalbündel
1 - 1 von 1
Vorschaubild nicht verfügbar
Name:
A1-1.pdf
Größe:
801.7 KB
Format:
Adobe Portable Document Format