Logo des Repositoriums
 

Classification of Large and Heterogeneous LiDAR Data Sets

dc.contributor.authorKaubukowski, Kenn
dc.contributor.authorNsonga, Baldwin
dc.contributor.authorKretzschmar, Vanessa
dc.contributor.authorAnnanias, Yves
dc.contributor.authorWiegreffe, Daniel
dc.contributor.authorHlawitschka, Mario
dc.contributor.editorKlein, Maike
dc.contributor.editorKrupka, Daniel
dc.contributor.editorWinter, Cornelia
dc.contributor.editorWohlgemuth, Volker
dc.date.accessioned2023-11-29T14:50:23Z
dc.date.available2023-11-29T14:50:23Z
dc.date.issued2023
dc.description.abstractIn the context of the renaturation of discontinued open-cast mines, the interactive visualization analysis of three-dimensional LiDAR provides a comprehensive overview for planning the subsequent use of these areas. When analyzing the measured point clouds, it is beneficial to classify the points, enabling the user to filter objects such as vehicles and buildings. Most current classification techniques for LiDAR data rely on good ground truth and work on specific types of measurements and resolutions. In this work, we present a semantic classification workflow for LiDAR data with highly heterogeneous acquisition and storage parameters. We apply the workflow to a freely available LiDAR data set and showcase the resulting classification. Our method is shown to reliably classify not only large-scale objects, such as buildings, but also small-scale objects, such as power lines and street lights.en
dc.identifier.doi10.18420/inf2023_173
dc.identifier.isbn978-3-88579-731-9
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/43100
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofINFORMATIK 2023 - Designing Futures: Zukünfte gestalten
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-337
dc.subjectGeographic Information System
dc.subjectLiDAR
dc.subjectRenaturation
dc.titleClassification of Large and Heterogeneous LiDAR Data Setsen
dc.typeText/Conference Paper
gi.citation.endPage1692
gi.citation.publisherPlaceBonn
gi.citation.startPage1683
gi.conference.date26.-29. September 2023
gi.conference.locationBerlin
gi.conference.sessiontitleÖkologische Nachhaltigkeit - Workshop on Systems to Support Renaturation Projects 2023 (SyRePro23)

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
07_09_03_Kaubukowski.pdf
Größe:
13.81 MB
Format:
Adobe Portable Document Format