Logo des Repositoriums
 

Predictive Algorithms in Learning Analytics and their Fairness

dc.contributor.authorRiazy, Shirin
dc.contributor.authorSimbeck, Katharina
dc.contributor.editorPinkwart, Niels
dc.contributor.editorKonert, Johannes
dc.date.accessioned2019-08-14T08:59:06Z
dc.date.available2019-08-14T08:59:06Z
dc.date.issued2019
dc.description.abstractPredictions in learning analytics are made to improve tailored educational interventions. However, it has been pointed out that machine learning algorithms might discriminate, depending on different measures of fairness. In this paper, we will demonstrate that predictive models, even given a satisfactory level of accuracy, perform differently across student subgroups, especially for different genders or for students with disabilities.en
dc.identifier.doi10.18420/delfi2019_305
dc.identifier.isbn978-3-88579-691-6
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/24401
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofDELFI 2019
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-297
dc.subjectLearning Analytics
dc.subjectFairness
dc.subjectOULAD
dc.subjectAt-Risk Prediction
dc.titlePredictive Algorithms in Learning Analytics and their Fairnessen
dc.typeText/Conference Paper 
gi.citation.endPage228
gi.citation.publisherPlaceBonn
gi.citation.startPage223
gi.conference.date16.-19. September 2019
gi.conference.locationBerlin, Germany
gi.conference.sessiontitleRecht & Ethik

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
DELFI2019_305_Predictive_Algorithms_in_Learning_Analytics_and_their_Fairness.pdf
Größe:
340.65 KB
Format:
Adobe Portable Document Format