Logo des Repositoriums
 
Zeitschriftenartikel

Reservoir Computing Trends

Vorschaubild nicht verfügbar

Volltext URI

Dokumententyp

Text/Journal Article

Zusatzinformation

Datum

2012

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Springer

Zusammenfassung

Reservoir Computing (RC) is a paradigm of understanding and training Recurrent Neural Networks (RNNs) based on treating the recurrent part (the reservoir) differently than the readouts from it. It started ten years ago and is currently a prolific research area, giving important insights into RNNs, practical machine learning tools, as well as enabling computation with non-conventional hardware. Here we give a brief introduction into basic concepts, methods, insights, current developments, and highlight some applications of RC.

Beschreibung

Lukoševičius, Mantas; Jaeger, Herbert; Schrauwen, Benjamin (2012): Reservoir Computing Trends. KI - Künstliche Intelligenz: Vol. 26, No. 4. Springer. PISSN: 1610-1987. pp. 365-371

Zitierform

DOI

Tags