Logo des Repositoriums
 

Adapting Organic Computing Architectures to an Automotive Environment to Increase Safety & Security

dc.contributor.authorLamshöft, Kevin
dc.contributor.authorAltschaffel, Robert
dc.contributor.authorDittmann, Jana
dc.contributor.editorDencker, Peter
dc.contributor.editorKlenk, Herbert
dc.contributor.editorKeller, Hubert B.
dc.contributor.editorPlödererder, Erhard
dc.date.accessioned2017-06-16T19:03:37Z
dc.date.available2017-06-16T19:03:37Z
dc.date.issued2017
dc.description.abstractModern cars are very complex systems operating in a diverse environment. Today they incorporate an internal network connecting an array of actuators and sensors to ECUs (Electronic Control Units) which implement basic functions and advanced driver assistance systems. Opening these networks to outside communication channels (like Car-to-X-communication) new possibilities but also new attack vectors arise. Recent work has shown that it is possible for an attacker to infiltrate the ECU network insides a vehicle using these external communication channels. Any attack on the security of a vehicle comes implies an impact on the safety of road traffic. This paper discusses the possibilities of using architectures suggested by Organic Computing to reduce these arising security risks and therefore improve safety. A proposed architecture is implemented in a demonstrator and evaluated using different attack scenarios.
dc.identifier.isbn978-3-88579-663-3
dc.identifier.pissn1617-5468
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofAutomotive - Safety & Security 2017 - Sicherheit und Zuverlässigkeit für automobile Informationstechnik
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-269
dc.subjectAutomotive
dc.subjectSystem Architectures
dc.subjectOrganic Computing
dc.titleAdapting Organic Computing Architectures to an Automotive Environment to Increase Safety & Security
dc.typeText/Journal Article
gi.citation.endPage119
gi.citation.startPage103
gi.conference.date30.-31. Mai 2017
gi.conference.locationStuttgart

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
paper07.pdf
Größe:
1.69 MB
Format:
Adobe Portable Document Format