Logo des Repositoriums
 

Experiences with the Model-based Generation of Big Data Pipelines

dc.contributor.authorEichelberger, Holger
dc.contributor.authorQin, Cui
dc.contributor.authorSchmid, Klaus
dc.contributor.editorMitschang, Bernhard
dc.contributor.editorNicklas, Daniela
dc.contributor.editorLeymann, Frank
dc.contributor.editorSchöning, Harald
dc.contributor.editorHerschel, Melanie
dc.contributor.editorTeubner, Jens
dc.contributor.editorHärder, Theo
dc.contributor.editorKopp, Oliver
dc.contributor.editorWieland, Matthias
dc.date.accessioned2017-06-21T11:24:44Z
dc.date.available2017-06-21T11:24:44Z
dc.date.issued2017
dc.description.abstractDeveloping Big Data applications implies a lot of schematic or complex structural tasks, which can easily lead to implementation errors and incorrect analysis results. In this paper, we present a model-based approach that supports the automatic generation of code to handle these repetitive tasks, enabling data engineers to focus on the functional aspects without being distracted by technical issues. In order to identify a solution, we analyzed different Big Data stream-processing frameworks, extracted a common graph-based model for Big Data streaming applications and de- veloped a tool to graphically design and generate such applications in a model-based fashion (in this work for Apache Storm). Here, we discuss the concepts of the approach, the tooling and, in particular, experiences with the approach based on feedback of our partners.en
dc.identifier.isbn978-3-88579-660-2
dc.identifier.pissn1617-5468
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofDatenbanksysteme für Business, Technologie und Web (BTW 2017) - Workshopband
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-266
dc.subjectBig Data
dc.subjectstream-processing
dc.subjectmodel-based development
dc.subjectcode generation
dc.subjectApache Storm
dc.titleExperiences with the Model-based Generation of Big Data Pipelinesen
dc.typeText/Conference Paper
gi.citation.endPage56
gi.citation.publisherPlaceBonn
gi.citation.startPage49
gi.conference.date6.-10. März 2017
gi.conference.locationStuttgart
gi.conference.sessiontitleWorkshop Big Data Management Systems in Business and Industrial Applications (BigBIA17)

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
paper05.pdf
Größe:
376.52 KB
Format:
Adobe Portable Document Format