Logo des Repositoriums
 

SQLScript: efficiently analyzing big enterprise data in SAP HANA

dc.contributor.authorBinnig, Carsten
dc.contributor.authorMay, Norman
dc.contributor.authorMindnich, Tobias
dc.contributor.editorMarkl, Volker
dc.contributor.editorSaake, Gunter
dc.contributor.editorSattler, Kai-Uwe
dc.contributor.editorHackenbroich, Gregor
dc.contributor.editorMitschang, Bernhard
dc.contributor.editorHärder, Theo
dc.contributor.editorKöppen, Veit
dc.date.accessioned2018-10-24T09:56:22Z
dc.date.available2018-10-24T09:56:22Z
dc.date.issued2013
dc.description.abstractToday, not only Internet companies such as Google, Facebook or Twitter do have Big Data but also Enterprise Information Systems store an ever growing amount of data (called Big Enterprise Data in this paper). In a classical SAP system landscape a central data warehouse (SAP BW) is used to integrate and analyze all enterprise data. In SAP BW most of the business logic required for complex analytical tasks (e.g., a complex currency conversion) is implemented in the application layer on top of a standard relational database. While being independent from the underlying database when using such an architecture, this architecture has two major drawbacks when analyzing Big Enterprise Data: (1) algorithms in ABAP do not scale with the amount of data and (2) data shipping is required. To this end, we present a novel programming language called SQLScript to efficiently support complex and scalable analytical tasks inside SAP's new main-memory database HANA. SQLScript provides two major extensions to the SQL dialect of SAP HANA: A functional and a procedural extension. While the functional extension allows the definition of scalable analytical tasks on Big Enterprise Data, the procedural extension provides imperative constructs to orchestrate the analytical tasks. The major contributions of this paper are two novel functional extensions: First, an extended version of the MapReduce programming model for supporting parallelizable user-defined functions (UDFs). Second, compared to recursion in the SQL standard, a generalized version of recursion to support graph analytics as well as machine learning tasks.en
dc.identifier.isbn978-3-88579-608-4
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/17332
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofDatenbanksysteme für Business, Technologie und Web (BTW) 2035
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-214
dc.titleSQLScript: efficiently analyzing big enterprise data in SAP HANAen
dc.typeText/Conference Paper
gi.citation.endPage382
gi.citation.publisherPlaceBonn
gi.citation.startPage363
gi.conference.date13.-15. März 2013
gi.conference.locationMagdeburg
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
363.pdf
Größe:
2.39 MB
Format:
Adobe Portable Document Format