Logo des Repositoriums
 
ConferencePaper

Learning to Generate Fault-revealing Test Cases in Metamorphic Testing

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/ConferencePaper

Zusatzinformation

Datum

2021

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Metamorphic Testing is a software testing paradigm which aims at using necessary properties of a system under test, called metamorphic relations (MR), to either check its expected outputs, or to generate new test cases. Metamorphic Testing has been successful to test programs for which a full oracle is unavailable or to test programs with uncertainties on expected outputs such as learning systems. In this paper, we formulate the effective selection of MRs as a reinforcement learning problem, based on contextual bandits. Our method Adaptive Metamorphic Testing sequentially selects a MR that is expected to provide the highest payoff, i.e., that is most likely to reveal faults. Which MRs are likely to reveal faults is learned from successive exploration trials. The bandit explores the available MRs and evaluates the fault landscape of the system under test, thereby providing valuable information to the tester. We present experimental results over two applications in machine learning, namely image classification and object detection, where Adaptive Metamorphic Testing efficiently identifies weaknesses of the tested systems. The original paper "Adaptive Metamorphic Testing with Contextual Bandits" first appeared in the Journal of Systems and Software (2020).

Beschreibung

Spieker, Helge; Gotlieb, Arnaud (2021): Learning to Generate Fault-revealing Test Cases in Metamorphic Testing. Software Engineering 2021. DOI: 10.18420/SE2021_37. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-704-3. pp. 99-100. Braunschweig/Virtuell. 22.-26. Februar 2021

Zitierform

Tags